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Dynamical behavior of a complex fluid near an out-of-equilibrium transition:
Approaching simple rheological chaos

Jean-Baptiste Salmon, Annie Colin, and Didier Roux
Centre de Recherche Paul Pascal, Avenue Schweitzer, 33600 Pessac, France

~Received 12 April 2002; published 24 September 2002!

We report here an extensive study of sustained oscillations of the viscosity of a complex fluid near an
out-of-equilibrium transition. Using well defined protocols, we perform rheological measurements of the onion
texture near a layering transition in a Couette flow. This complex fluid exhibits sustained oscillations of the
viscosity, on a large time scale~500 s! at controlled stress. These oscillations are directly correlated to an
oscillating microstructural change of the texture of the fluid. We observe a great diversity of dynamical
behavior and show that there is a coupling with spatial effects in the¹v direction. This is in agreement with
a careful analysis of the temporal series of the viscosity with the dynamical system theory. This analysis
indicates that the observed dynamical responses do not strictly correspond to three-dimensional chaotic states,
probably because some spatiotemporal effects are present and are likely to play an important role.

DOI: 10.1103/PhysRevE.66.031505 PACS number~s!: 83.10.Gr, 47.50.1d, 83.85.Cg
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I. INTRODUCTION

Foams, pastes, liquid crystals, polymers, and emuls
all share a common property: when submitted to a sh
flow, they exhibit various unusual behaviors. They a
known ascomplex fluids. Rheological properties of thes
types of materials have been extensively studied mainly
cause they exhibit non-Newtonian behavior. If in terms
mechanical behavior, these systems have been relatively
described, the question of the microscopic origin of the
effects has only been addressed more recently. Indeed
complex fluids have a macromolecular architecture wh
leads to a coupling between their structures and the flow
the 1980s, the development of techniques allowing the
amination of the structure of the fluids under shear allow
the community of physicists to have, in parallel, inform
tions on the rheological behavior and on the microstruct
under flow @1–3#. One of the questions addressed by t
type of approach is related to the very nature of the coup
between structure and flow; indeed, this coupling m
modify the structure of the fluid undergoing shear flow. It
now quite clear that a purely mechanical approach is
enough to understand the experimental behavior@4,5#. Re-
cently, many different experimental systems have shown
shear can be coupled to a thermodynamical phase trans
@7,8,6#, but new types of organization may appear und
shear which do not exist at rest@9,3,10#. Theoretical ap-
proaches tried to describe this complex behavior as a c
pling between hydrodynamics and thermodynamics. E
though some success in this way can be noticed@12–17#, we
are far from having a satisfying description of the stea
behavior of these systems under shear.

Besides the understanding of the structure under ste
shear and because these systems exhibit out-of-equilib
transitions, we do expect an even richer behavior. Indee
has been shown experimentally that near out-of-equilibri
transitions, the temporal behavior of the viscosity of a co
plex fluid, namely, lyotropic systems, may exhibit sustain
oscillations@18–23#. The origin of the latter is still unknown
1063-651X/2002/66~3!/031505~13!/$20.00 66 0315
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but some authors suggest different scenarios: coupling w
shear induced structures@19#, mechanical instability in a
shear banding case@21#, or coupling with elastic instabilities
@18#. It has also been suggested that the rheology of wo
like micelles can exhibit chaotic behavior@21#. Theoretically,
with a microscopic model some authors foundrheochaosin
the rheology of a nematic liquid crystal@24#. Other authors
proposed theoretical models@25#, based on the equations o
the rheology of soft glassy materials@12#, in which sustained
oscillations of the shear rate at an imposed stress take p
Very recently, the same authors have foundrheochaosin
such spatially homogenous models@26#. The aim of this pa-
per is to make an extensive study of an experimental sys
where sustained oscillations have been previously obse
@19#. In the system studied here, a close-compact assem
of soft elastic spheres~onions! @27,28#, it has been assesse
earlier@29# that the theory of bifurcations may be a guide f
the understanding of the temporal rheological behavior of
complex fluid. This paper presents important experimen
results concerning the great diversity of temporal obser
responses near an out-of-equilibrium transition. In a first s
we carefully study using several protocols the temporal
havior of the rheological signals. We try to evidence a d
namical scenario which may indicate the presence of
Hopf bifurcation. In a second part we relate this rheologi
behavior to the structural evolution of the fluid using lig
scattering. The last part of the work is related to a care
analysis of the complex temporal behavior obtain in cert
cases~resembling chaos!. We show with the help of dynami
cal system theory that the oscillating viscosity may not si
ply be described with a three-dimensional dynamical syst
probably because spatiotemporal effects are playing an
portant role.

II. DYNAMICAL BEHAVIOR OF THE RHEOLOGY
OF THE ONION TEXTURE

The complex fluid we consider here is a lyotropic lamel
phase prepared with sodium dodecyl sulfate~6.5 wt %!, oc-
tanol ~7.8 wt %! and water salted with 20 g l21 of sodium
©2002 The American Physical Society05-1



e

ll
is
ic

em
a

id
rd
d

s
r

d
he
ll

at
rg
s
on
rs
m

in

r
ed
ce
a
e
T

on

n

ve

n-
ural
t
res
tes,
at a
e

s of
g to
ng
a-
r

JEAN-BAPTISTE SALMON, ANNIE COLIN, AND DIDIER ROUX PHYSICAL REVIEW E66, 031505 ~2002!
chloride. At equilibrium, this phase is made of membran
~surfactant bilayers! of thicknessd52 nm, regularly stacked
and separated by solvent. The distance between the lame
the smectic periodd, measured with neutron scattering,
about 15 nm@30#. Such a system is stabilized by entrop
interactions due to exclusion between the undulating m
branes @31#. This system is sensitive to temperature:
34 °C, a diphasic sponge-lamellar mixture appears@32,33#.

To probe the rheological properties of this complex flu
we use the experimental device presented in Fig. 1. In o
to measure the viscosity, the lamellar phase is confine
Mooney-Couette cells with gape51 mm or e50.5 mm,
heighth530 mm, and inner radiusR524 mm. A stress con-
trolled rheometer~AR1000 TA Instrument! allows us to im-
pose a torque on the axis, on which the rotor is fixed, a
induce a controlled stresss in the fluid. The rheomete
records continuously the shear rateġ as a function of time;
the time scale of this measurement is very short compare
the time scales of the experiment. In order to follow t
effect of shear on the microstructure of the phase, the ce
totally transparent and two lasers~He-Ne 15 mW! give the
diffraction patterns at different heights in the cell. The p
terns are collected on a screen and digitalized with a cha
coupled device~CCD! camera~Cohu!. Since the laser beam
go through the sample twice, one obtains two diffracti
rings. The diffraction pattern corresponding to the fi
sample has an ellipsoidal shape due to the optical defor
tion of the Couette cell~playing the role of a cylindrical
lens!. The second sample leads to a classical circular r
TemperatureT is controlled within60.1 °C using a water
circulation around the cell~the range of variation of the latte
is about 60.04 °C). The experimental behavior observ
here depends strongly on the sample, namely, on the con
tration of octanol. With a classical setup, we observed th
after a few hours~2–3 h!, we have a significant change in th
composition due to the evaporation of octanol and water.
control the evaporation of octanol and water and their c
densation on the top of the cell, the latter is closed with
thermostated plate, which allows up to 80 h experime
with the same sample and a negligible evaporation.

The effect of shear on this system has been extensi

FIG. 1. Experimental setup, a thermostated plate~not shown! on
the top of the cell allows one to avoid evaporation.
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studied previously@27,28#. It has been shown that shear co
trols the texture of the lamellar phase, and a series of text
transitions are observed asġ is increased. Small-angle ligh
scattering allows us to characterize the different textu
which can be obtained at different stress. At low shear ra
a state of partially oriented lamellar phase is observed;
typical shear rate of 1 s21, the texture changes radically: th
membranes are wrapped in multilamellar vesicles~called on-
ions!, close compact organized. The size of these onions i
the order of microns, and scales with shear rate accordin
R;ġ21/2. The diffraction pattern is an homogeneous ri
@cf. Fig. 2~a!#, indicating that there is no long-range correl
tions between onions. Atġ'15 s21, six fuzzy peaks appea

FIG. 2. Diffraction figures obtained under shear.~a! Ring of
scattering,~b! fuzzy hexagonal pattern,~c! hexagonal pattern.
5-2
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on the ring@cf. Fig. 2~b!#. This corresponds to thelayering
transition@27,34#: the onions now exhibit a long-range or
entational order under shear~which is conserved and evolve
into a long-range positional order when the shear is stopp!
@27,28#. In this regime, two-dimensional layers of onion
with hexagonal order slide onto each other. This transitio
named the layering transition after a similar disorder/or
transition was observed in colloids under shear@35#. When
the shear rate is increased, the peaks on the ring bec
more contrasted, as shown in Fig. 2~c!. It is impossible to
assess whether or not the diffraction pattern shown in F
2~b! corresponds to a coexistence of the two different t
tures or to weak spatial correlations. The spots with wa
vectors along the rheometer axis are less intense than
others. This is due to the zig-zag motion of the planes
onions when sliding on to each other@35#.

Actually, the layering transition exhibits different rheo
logical behavior when the temperature is changed. WheT

<27 °C, the rheological flow curvess vs ġ are continuous.
It is always possible to define an asymptotic stationary va
for the measured shear rate. A typical flow curves vs ġ, for
T526 °C ande51 mm is shown in Fig. 3. Each point co
responds to a stationary state of the shear rate. The diffe
regions A, B, and C shown in the flow curve correspond
the different diffraction patterns, respectively, shown in Fi
2~a!, 2~b!, and 2~c!. In Fig. 4 are shown the temporal re
sponses of the shear rate for the range 14→17.5 Pa and an
increment of stress of 0.5 Pa. The temporal behavior of
shear rate becomes noisier as the critical stresssc'16 Pa is
approached. The Fourier transforms of these time series
bit no peaks, so there is no characteristic time in the recor
noisy shear rate.

When T>27 °C and stress is imposed, there is a reg
where it is difficult to define a stationary viscosity. Typic
shear rate responses, on a fresh sample, at an imposed
near the critical stresssc of the layering transition and at
temperatureT531 °C are shown in Fig. 5; the stationa
disordered onion texture appears after about 30 min, as
with light scattering. In Fig. 5~a!, after 10 000 s, the recorde
shear rate exhibits transitory oscillations with a period

FIG. 3. Flow curve atT526 °C, e51 mm. The regions A, B,
and C correspond to the different diffraction patterns shown in F
2.
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about 500 s, this oscillating regime disappears after 6–
and anasymptotic stationarystate is reached after 25 000
the nonlinear rheology of this system exhibits a very lo
time of asymptotization near the out-of-equilibrium tran
tion. The second recorded behavior reproduced in Fig. 5~b!
has been obtained with the same stress. The asymptotic
for the shear rate differs from the first experiment, this st
corresponds to a noisy complex dynamical response, no
tionary shear rate can easily be defined. This illustrates
strong dependence on initial conditions for the onset of
temporal instabilities.

The region of dynamical behavior of the viscosity see
to vanish whenT approaches 27 °C. A convenient way
represent all these effects is to use ashear diagram, where
stationarytextures are plotted as a function ofT andġ. Such
a diagram is plotted in Fig. 6.

As suggested in an earlier work@19#, in the region of
parameters where dynamical reponses occur, the rheolo
behavior represented by the flow curve must be associ
with the temporal responses of the shear rate. In orde
show the differentasymptoticdynamical responses of th
shear rate in the vicinity of the layering transition, we mu
define a protocol in order to get enough reproducibility in t
flow curvess vs ġ. Two parameters are important: the stre
incrementds between two different imposed stresses, a
the time intervaldt where we wait before changing the a
plied stress. Ifdt<1000 s, the different flow curves are no
reproducible and depend drastically on the initial conditio
If ds>1 Pa we may miss the dynamical region because
its narrowness. Protocols with largedt and smallds will
correspond toquasistaticapproaches of the transition. Actu
ally, compromises have been found to use the most qu
static approach. We are limited by the evaporation of
sample which gives us a maximum of the accessible exp
mental time~about 80 h!.

For a systematic study we decided to use two differ
protocols to test the quality of the quasistatic approach
we have. We have also used different geometries to try
separate temporal dependence instabilities from spatial s
tures ~cf. Sec. III!. For that we made several Couette ce

.

FIG. 4. Temporal responses of the shear rate for the range
→17.5 Pa of imposed stress with incrementds50.5 Pa, corre-
sponding to the flow curve shown in Fig. 3.
5-3



JEAN-BAPTISTE SALMON, ANNIE COLIN, AND DIDIER ROUX PHYSICAL REVIEW E66, 031505 ~2002!
FIG. 5. Typical shear rate responses at an imposed stress (s515 Pa,T531 °C) near the layering transition.
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corresponding to different heights and different gaps.
will mainly discuss here the effect of the gap: two differe
ones have been studied~1 mm and 0.5 mm!. Figure 7 shows
two flow curves for two different protocols, both of the
with a gap e51 mm. In protocol I,dt57200 s andds
50.5 Pa. The stress is first increased from 13 to 19 Pa
then decreased from 19 to 13 Pa. The results of the sec

FIG. 6. Shear diagram of the lyotropic lamellar phase stud
the gray region corresponds to nonstationary shear rate respon
controlled stress.
03150
e
t

nd
nd

protocol ~protocol II, dt'15000 s andds'0.1 Pa) will be
discussed later. The different values reported in Fig. 7 co
spond to the mean values of the asymptotic recorded s
rate, and arrows represent oscillations with a great amplit
between the maximum and the minimum value of the os
lating shear rate. Figure 8 shows schematically, for m
convenience, the different results of these protocols. S
lines correspond to asymptotic stable states and dashed

;
s at

FIG. 7. Different flow curves withT530 °C ande51 mm, for
two different experimental procedures.3 corresponds to protocol I
stress up.s corresponds to protocol I, stress down.• corresponds
to protocol II.
5-4
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to metastable states.
The flow curve, with protocol I, exhibits six regions o

different temporal responses ofġ displayed in Fig. 9.
On the way up, the following regions are seen
Region 1(A→B): Relaxation to a stationary state of di

ordered onions@Fig. 9~a!#.
Region 2(B→C). This is a branch that is followed on th

way up; noise appears with a characteristic period of 50
and an amplitude of about 1 s21 @Fig. 9~b!#. Note that even
when we wait for a very long time with a different protoco
no transition seems to appear to the branchB→G ~we will
see that this is different from the branchC→D).

FIG. 8. Schematic representation of the asymptotic states~solid
lines!, metastable states~dashed line! in the vicinity of the layering
transition, and their corresponding dynamical regions.
03150
s

Region 3(C). The shear rate begins to oscillate after t
transient phase with a period of 500 s and an amplitude
about 5 s21 @Fig. 9~c!#. At the same time, six fuzzy peak
appear on the diffraction ring, indicating the onset of spa
correlation between onions@cf. Fig. 2~b!#.

Region 4(C→D). The shear rate shows oscillations wi
a large amplitude of 15 s21 ~this corresponds roughly to th
distance between the branchesC→D andG→E) and with a
period of about 500 s@Fig. 9~d!#. In this regime the diffrac-
tion pattern clearly shows a temporal correlation between
structure of the sample and these oscillations. Modulation
the scattering pattern is observed on the time scale of
rheological signal. When we wait long enough, we end
going to the branchG→E, which is the one followed on the
way down.

Region 5(E→F). The shear rate relaxes on a noisy s
tionary branch@Fig. 9~e!#. The corresponding texture corre
sponds to the diffraction pattern shown in Fig. 2~c!.

On the way down, the following region is seen.
Region 6(E→B). A complex dynamical state appea

progressively. The main period is 300 s and the greatest
plitude is about 5 s21 @Fig. 9~f!#. This complex dynamics
also disappears when approachingB.

We will come back to the problem of analyzing the sign
in the last part of this paper. Note, however, that on the w
down the branch followed is different from the one followe
on the way up. Protocol I allows us to record transitory b
havior, which reveals a hysteresis loop and oscillating v
cosity. As predicted by the dynamical system theory, one
expect richer dynamical behavior when asymptotic states
reached in the vicinity of hysteresis and oscillating bifurc
tions @36,37#. We have seen that transient phases longer t
dt57200 s may occur with this system. So in order to ge
better understanding, the experiments were repeated
dt'15 000 s andds'0.1 Pa~protocol II in Fig. 7!. In this
protocol, stress is imposed fromB to C. At the point C, a
e

-

FIG. 9. Different dynamical
responses of the shear rate in th
vicinity of the layering transition
with e51 mm. Note the different
amplitudes of these temporal re
ponses.~a! Region 1 (s513 Pa),
~b! region 2 (s515.5 Pa),~c! re-
gion 3 (s516 Pa), ~d! region 4
(s517 Pa), ~e! region 5 (s
518.5 Pa), and~f! region 6 (s
516 Pa).
5-5
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slow drift of shear rate into region 6 to the pointG takes
place. Then the stress is imposed fromG to A. With protocol
II, region 4 does not exist. The way followed is region 2→
region 3→ region 6. The large oscillations of region 4 o
served in protocol I correspond to metastable dynamics~i.e.,
they do not exist if we wait long enough!. This protocol
allows us to record asymptotic states of the oscillating v
cosity: in the vicinity of the pointC ~region 3!, aperiodic
oscillations of the shear rate are recorded with a period
500 s and an amplitude of 3 s21 ~Fig. 10!. This aperiodic
time series corresponds to oscillations between a fixed m
mum value ('12 s21) and a nonfixed maximum value. Th
region of existence of the latter is very thin, about 0.05
and the transient phases take about 5 h. So up to 80 os
tions have been recorded before the slow drift (C→G) of
the shear rate into the region of complex dynamics~region 6!
takes place. The dynamics in region 6 shown in Fig. 11 c
responds to a complex dynamical state, with a period
about 300 s. When stress goes down approaching pointB, the
quasistatic protocol II allows us to show the simplificati

FIG. 10. Aperiodic time seriesġ(t) in region 3.

FIG. 11. Complex dynamical time seriesġ(t) in region 6.
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shown in Fig. 12 of the complex dynamics of region 6.
the precision of the protocol (dt'15 000 s and ds
'0.1 Pa), no simpler dynamics has been recorded. The m
difference between the two protocols~i.e., the disparition of
region 4! is a well known characteristic of hysteresis beha
ior: the hysteresis loop is larger (B→D→E→B in protocol
I! with a small interval of timedt than for largerdt (B
→C→G→B in protocol II! @38#. With protocol II we can
assess that the loop (B→C→G→B) corresponds to a rea
hysteresis loop between region 2 and region 6.

The same rheological measurements were performed
a gape50.5 mm with the protocol I, but from 14.5 to 18 P
and from 18 to 13.5 Pa. The corresponding flow curve
shown in Fig. 13. The flow curves with the gapse50.5 and
e51 mm are similar. The confinement does not strongly
fect the complexity we observed because all the dynam
scenarios~i.e., the six regions in a nonasymptotic protoco!
are observed. The hysteresis loop and the different oscilla

FIG. 12. Typical time series showing the simplification of th
dynamics of region 6 when approachings0.

FIG. 13. Flow curve withT530 °C ande50.5 mm for the
experimental protocol I.3 corresponds to protocol I, stress up.s

corresponds to protocol I, stress down.
5-6
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regimes still exist in the small gap. However, some rheolo
cal differences must be noticed:

In a nonasymptotic protocol, as shown in Fig. 14, larg
oscillations in region 4 (20 s21→50 s21) are obtained with
e50.5 mm more easily than with the larger gap (25 s21

→40 s21). They also have a more relaxational shape th
for the larger gap~i.e., the transition from low values to hig
values is sharper!.

The hysteresiscycle (B→D→E→B) still exists, but is
larger in the confined geometry than fore51 mm ~cf. Figs.
7 and 13,ġ0'15 s21, ġ1'55 s21 for e50.5 mm andġ0

'15 s21, ġ1'45 s21 for e51 mm).
With the gap e51 mm, the branchF→G does not

strictly correspond to the branchG→F ~cf. Fig. 7!.
These effects will be discussed in the following sectio

We have seen that a very rich temporal dependence beh
is seen approaching a layering transition. Several proto
have been followed together with different cells. We ha
shown that there exists a true hysteresis loop which per
when the sampling time of the experiment is increased
which depends on the geometry of the experiment. We h
also seen that sustained oscillations can be observed, bu
metastable way. A very rich signal can also be obtain
which can eventually be seen as chaotic. In what follows
will address first the nature of the temporal dependen
More specifically, we want to understand how much the
temporal dependences are related to textural changes. T
we will try to address the question of the nature of the co
plex signal~whether it is chaotic or not!.

III. A COUPLING BETWEEN TEMPORAL INSTABILITIES,
STRUCTURE AND SPATIAL INSTABILITIES

We have seen that complex dynamics can be describe
this system. A previous work has shown that the obser
oscillations of shear rate were correlated to structu
changes in this complex fluid system@19#: the fluid oscillates
between high shear rate values corresponding to the lay
state and low shear rate values corresponding to the d

FIG. 14. Shear rate oscillations in region 4 for two differe
geometries,~a! e50.5 mm, ~b! e51 mm.
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dered state. In fact, there are also macroscopic instabil
that occur in complex fluids: bands in the vorticity directio
and in the¹v direction may appear in the vicinity of out-of
equilibrium transitions~vorticity and shear banding!. These
instabilities have been extensively studied both theoretic
and experimentally@8,39–41#. These macroscopic instabili
ties may lead to a coupling with the dynamical observ
behavior in our system. In this section, we report argume
to show that the vorticity direction is irrelevant to the d
namical recorded shear rate and we suggest that coup
with spatial structures in the¹v direction may occur.

Observing the sample with naked eyes allows us to
quite a lot of inhomogeneities in the vorticity direction
These inhomogeneities can be described as horizontal ba
These bands have a weak contrast and delimit the Cou
cell into different regions of turbidity. There is also no sele
tion of a wavelength, and thus no systematic number or s
of bands have been seen. The typical range of observed
is 0.1 mm to 10 mm. These bands appear systematic
during transient phases and rarely in asymptotic states. T
appear roughly at the level of pointB and persist until point
F. The dynamics of these bands does not seem to be co
lated to the dynamical recorded viscosity. To better und
stand the coupling between these macroscopic structures
rheology, we decide to use the diffraction patterns recor
on the CCD~cf. Fig. 1! at two different heights in the cell
The direct beam of the laser is hidden by a beam stop
avoid the saturation of the signal. A contrast parameterf can
be defined. It is convenient to define it as naught in the h
symmetry texture~disordered state of onion! and different
from zero in the low symmetry texture~layered state!. We
chose to definef as the difference between the mean inte
sity of scattered light in a region of the ring where a pe
appears and the mean intensity in a region of the ring wh
no peak ever appears~cf. Fig. 2!. In a region where no struc
tural changes occur, we checked thatf does not depend on
the shear rateġ. In fact, below pointB and above pointE,
the stationary states correspond, respectively, to a ring
scattering (f50) and a modulation of scattered light on th
ring (f.0). Figure 15 shows contrast parametersf mea-
sured at two different heightsz1 andz2 (iz12z2i'1 cm) in
the Couette cell and the corresponding oscillating shear
in region 4. The similarity between the three time series
obvious. Thelocal measures off ~only integrated into the
¹v direction! at two different heights, are directly correlate
to the global measure of the shear rate. This demonstra
that the shear rate oscillations, if coupled with macrosco
spatial structures, are invariant under az-translation in the
Couette cell even though inhomogeneities can be obser
The results shown in Fig. 15 are~i! the existence of correla
tions between the oscillating viscosity and the microstruct
of the phase, and~ii ! their presence in all the height of th
cell. Indeed, we tried different Couette cells presenting d
ferent heights~30 and 10 mm!. No spectacular changes we
observed in the temporal dependence of the signal and
observed dynamical scenario is still present. These obse
tions are still comforting us, in the fact that vorticity is~at
first approximation! irrelevant to the dynamical scenario w
observe. The change in the gap was, by far, more spectac
5-7
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In the preceding section, rheological measurements w
performed in two different geometries with different gaps
confinement in the gap may change the observed dynami
spatial structures lying in the¹v direction were oscillating.
In fact, the flow curves withe50.5 mm are quite similar to
the flow curves withe51 mm and the mean periods of th
recorded oscillations are equivalent, but some rheolog
differences were noticed above. There is a new differe
when correlation with microstructure is done. The large
cillations observed in a nonasymptotic protocol withe
50.5 mm are directly correlated with the contrast parame
as shown in Fig. 16. The complex fluid oscillates betwe
the two branches~disordered state and layered state! sincef
oscillates between zero~isotropy of the ring! and a non-zero
value ~peaks on the ring!: region 4 corresponds to homog
neous relaxational oscillations for the small gap. For
larger geometry (e51 mm), there is also correlation be
tween structure and flow as shown in Fig. 17. However,

FIG. 15. Correlation between two contrast parametersf at two
different heights in the Couette cell (3) with a gape50.5 mm and

ġ(t) ~solid line! in region 4.

FIG. 16. Correlation between the contrast parameterf (3) and

ġ(t) ~solid line! in region 4 with gape50.5 mm.
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contrast parameter does not oscillate sharply between
and a nonzero value: there is already an anisotropy of
ring in this region. The system oscillates between a s
where spatial correlations are weak~low shear rate values! to
a state where the latter are strong~high shear rate values!. In
the larger gap, the region 4 corresponds to oscillations
tween a mixture of these states. So this may correspond
separation in different oscillating ordered structures in
¹v direction. If such spatial structures in the¹v direction
were existing, the flow curves will depend on the gap sin
spatial effects between oscillating structures may be stron
in the large gap than in the small gap. This may explain
observed difference betweenF→G and G→F in the flow
curve in Fig. 7. The schematic flow curve presented in Fig
corresponds to a homogenous case, well fitted by the
flow curve measured withe50.5 mm. These observation
suggest that the¹v direction is relevant for the dynamica
observed scenario.

To summarize the results of this section, there are ar
ments to show that the observed dynamical complexity d
not depend~at first approximation! on the vorticity direction.
It depends more on the¹v direction. However, the strong
differences between the two geometries (e51 mm ande
50.5 mm) are observed only in the metastable region.
particular, to the precision of the device (dt'15 000 s and
ds'0.05 Pa), no simplifications of the dynamics of the v
cosity were observed with the small gap. We will come ba
to these results in Sec. IV.

IV. ANALYSIS OF THE DYNAMICAL BEHAVIOR OF
VISCOSITY WITH DYNAMICAL SYSTEM THEORY

At this stage, we would like to spend some time analyz
the observed experimental behavior, following the out-
equilibrium theories which have been experimentally a
theoretically developed in the last 30 years. In particular,
complex signal that we observed on branches (B→D and
E→B) could eventually be described with low-dimension
dynamical systems, as recently suggested on other com

FIG. 17. Correlation between the contrast parameterf (3) and

ġ(t) ~solid line! in region 4 with gape51 mm.
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DYNAMICAL BEHAVIOR OF A COMPLEX FLUID NEA R . . . PHYSICAL REVIEW E 66, 031505 ~2002!
fluids @21#. To assess low-dimensional chaotic properti
there exist mainly three techniques based on the propertie
low-dimensional dynamical systems:~i! to exhibit thetran-
sition to chaos, ~ii ! to exhibit the deterministic applicatio
which creates a strange attractor, and~iii ! to compute the
metric invariants of a strange attractor@42#. The latter
method has been used in the following works@21# in the
context of rheology of wormlike micelles, but this metho
required a very long time series to give good estimates of
metric invariants~such time cannot be reached in typic
rheological experiments!. Moreover there are no theories th
can give errors for these invariants@42#, and, finally, this
method does not provide the topological properties o
strange attractor. For these reasons, we have followed
other two methods to analyze our data. For that we nee
recall some basic principles of dynamical system theory
we will use these principles as a framework to analyze
data.

Dynamical system theory describes the properties of
lutions of dynamical systems which are sets of ordinary d
ferential equations. A dynamical system can be written a

Ẋ5 f ~X,m!, ~1!

whereX is ann-dimensional vector which evolves accordin
to Eq. ~1!. m is a p-dimensional vector of parameters whic
controls the mathematical form of the functionf. The solu-
tions of Eq.~1! can be seen as trajectories in an-dimensional
space called thephase space. These trajectories cannot cro
each other due to the unicity of solution for a given init
condition. In a lot of physical systems, dissipation of ene
occurs, this characterizes adissipativesystem. In such sys
tems, after a transient phase, all the trajectories collapse
subspaceA, called theattractor. The dimension of this at-
tractor has the following property due to dissipation:d(A)
,n. The topological properties of the attractor are of ma
importance to study theasymptoticsolutions of a dissipative
dynamical system.

Dissipative dynamical systems of dimension 3 may
hibit solutions which are aperiodic@43#. Such solutions are
extremely sensitive to initial conditions and their dynam
cannot be predicted. Such solutions are calledchaoticsolu-
tions. In low-dimensional dissipative dynamical syste
with n53, which exhibit chaotic solutions, the mathematic
condition 2,d(A),3 for the dimension of the attractor i
required. As a result, such an attractor hasfractal properties
and is called astrange attractor.

In the theory of dynamical systems, the solution evolv
from a stationary state~i.e., Ẋ50) to a chaotic state follow-
ing a set of bifurcations asm is changed. A bifurcation is the
passage from a solution to another which is not topologic
equivalent to the first@44,45#. The set of bifurcations neces
sary to create a strange attractor is called thetransition to
chaos. Experimentally, to show such a transition by chang
the parametersm of the experiment is a strong proof for th
existence of a chaotic state.

In a lot of physical systems, the presumed model wh
reproduces the dynamics may have a high number of e
tions. However, when approaching a bifurcation, thenormal
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form theoremmay allow us to reduce the complexity of th
equations to a simple equation called thenormal form, which
described the dynamics in the vinicity of the bifurcatio
Since the bifurcations are not generically simultaneous,
dynamics can be reduced to a low-dimensional dynam
system with the dimension increasing from 1 as the con
parameters are changed. This theorem involves that for c
plex systems~like rheology of complex fluid! we may expect
that the dynamical aperiodic states near an out-
equilibrium transition can be expressed as the solutions
three-dimensional dynamical system.

In the experiment described above, two parametersm can
be used: the stresss and the temperatureT. Previously, dif-
ferent regimes of dynamical behavior of the viscosity ha
been presented. Namely, the aperiodic oscillations recor
in the vicinity of the pointC ~Fig. 10! may be described with
a three-dimensional dynamical chaotic system. As discus
above, if this dynamics corresponds to a chaotic state, a t
sition to chaos should be present, in particular, a Hopf bif
cation leading to a limit stable cycle should exist~i.e., a
periodic state!. This Hopf bifurcation may lead to the behav
ior of Fig. 9~b!, where, before any transition, the stationa
state becomes noisy with a period that is the same as in
aperiodic state. This phenomenom is calledstochastic reso-
nanceand corresponds to the amplification of noise nea
Hopf bifurcation@46#. In fact, at the precision of the devic
(ds'0.01 Pa,dt'15000 s, anddT50.1 °C) when stress
or temperature is varied no periodic asymptotic viscosity
been recorded before this aperiodic state. So if a Hopf bi
cation exists, which is necessary to create a chaotic dyn
ics, it must be subcritical. Such a case is shown in Fig.
where the chosen parameter is stress. Whens,s1, the sta-
tionary state is stable, and there is just stochastic reson
when stress approachess1 ~region 2!. At stresss1, a stable
limit cycle appears with a finite amplitude. Betweens1 and
s2, the stable stationary state and the stable limit cycle
exist, but some bifurcations may arise on the cycle wh
lead to a chaotic dynamics (N→P). Whens.s2, the sta-

FIG. 18. Subcritical Hopf bifurcation and transition to chaos;s2

corresponds to the loss of stability of the stationary state. At st
s1, a limit cycle exists, but betweenN and P, transition to chaos
may occur.
5-9
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tionary state is no longer stable and the stable asymp
state corresponds to a chaotic state. This scenario c
eventually correspond to the observed experimental one
gion 1→ region 2→ region 3. In order to assess this hypot
esis, when stress oscillates aperiodically ats>s2 in region
3, and when stress goes down on the branchP→N, we may
expect simplification to a periodic state. To the precis
ds'0.01 Pa anddt'15 000 s, no periodic viscosity ha
been recorded. This observation means thatis12s2i
<0.01 Pa. Such an observation has also been checked
temperature as the parameter. As discussed in Sec. III
simpler dynamics arise when approaching pointB when
stress goes down from region 6. The only transition we
served is the recorded time series shown in Fig. 12. So,
the transitionG→B→A, no Hopf bifurcation has been see
However, the dynamical responses of the shear rate in
vicinity of points B ~Fig. 12! and C @Figs. 5 and 9~b!#
strongly suggest the presence of subcritical Hopf bifur
tions.

Since no success in showing the scenario related
Hopf bifurcation has been obtained, one could eventually
to analyze the signal obtained in the aperiodic regime.
that we can use techniques that have been developed to
onstrate the chaotic nature of experimental data. There a
lot of methods to assess whether or not a recorded time s
is chaotic of low dimensionality. They involve different in
variants: metric, dynamic, and topologic@42#. The first two
methods compute the metric and dynamic invariants o
strange attractor, such as Lyapunov exponents and var
dimensions of the strange attractor. No statistical theory
ists that assigns errors to the latter, so it is impossible
determine the validity of the computed invariants. In o
case, the time series recorded in region 3 contains up to
oscillations, so it is impossible to use those methods.
third method is based on the topological properties of
strange attractor. Currently, 100 oscillations are enough
assess chaotic dynamics. Moreover, the sampling time in
val is 1 s in therecorded time series, which leads to 5
points per cycle: this is enough to use the method. Stra
attractors are topological objects with fractal properti
which allow us to have thesensitive to initial conditions
property between two trajectories. To compute a strange
tractor using a time series, one may use the embedding t
rem. Such a theorem conjectures that, for a dynamical
tem like Eq.~1!, the attractorA constructed with the natura
variables$Xi(t)% is topologically equivalent to the construc
tion of A with the following variables: $Xi(t),Xi(t
1t),Xi(t12t), . . . %. This is called thetime delay embed
ding. The delay timet is arbitrary but a useful choice mus
be found to study an experimental time series. Other emb
ding variables can be used, such as$Xi(t),Ẋi(t),Ẍi(t), . . . %
and other combinations. The embedding theorem allow
when just one variable is measured, as in a lot of experim
tal devices, to reconstruct the attractorA without knowing
all the variables of the dynamical system.

Let us first present a typical case. We will use this case
a modified way at the end of the paper. Such a constructio
given for the Ro¨ssler system with (a,b,c)5(0.3,0.3,4.5),
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ẋ52y2z,

ẏ5x1ay,

ż5b1z~x2c! . ~2!

Such a system exhibits chaotic solutions for the given par
eters. The numerical integration of this system is shown
Fig. 19~a!, where the variablez(t) is reproduced. In Fig.
19~b! is the embedded corresponding attractor with a de
time t520 shown, which corresponds tot'T0/40, where
T0 is the mean period of the signal. To show determinis
chaos, one may find the deterministic application which g
erates the strange attractor. This topological approach
based on the study of the Poincare´ section which correspond
to the intersection of the trajectories lying on the attractorA
and a plane. Such a Poincare´ section is constructed and plo
ted in Fig. 19~c!. The chosen Poincare´ section corresponds to
the plane defined by the normal vector (21,0,1) in the frame
@z(t),z(t1t),z(t12t)#. The Poincare´ section is a line and
this corresponds to the dissipation of the Ro¨ssler system.
When Xk11 vs Xk is plotted, whereXk corresponds to the
abscissa on the Poincare´ section of thek intersection of the
trajectory with the latter@shown in Fig. 19~d!#, the corre-
sponding curve has a determined shape with a single m
mum and a slope that is greater than 1 at the intersec
with the bisecting line. This is called thefirst return map.
The time series shown in Fig. 19~a! cannot be predicted, bu
the construction of the attractorA, the Poincare´ section, and
finally the first return map, reveal the deterministic applic
tion which is characteristic of a deterministic dissipative ch
otic dynamical system. The shape of the first return m
allows one to predict the (k11) intersection of the trajectory
with the Poincare´ section if thek intersection is known: this
is the deterministic property of the equations. However
single-humped shape of the first return map, with an aver
slope greater than 1, permits one to have the sensitiv
initial conditions property between two trajectories.

FIG. 19. ~a! Solutionz(t) of the Rössler system,~b! embedding
reconstruction of the attractor,~c! Poincare´ section, and~d! first
return map constructed with the abscissaX of the Poincare´ section.
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DYNAMICAL BEHAVIOR OF A COMPLEX FLUID NEA R . . . PHYSICAL REVIEW E 66, 031505 ~2002!
In the experimental time series recorded, we have c
fully followed the same analysis. Preliminarily, a hig
frequency filter has been used to eliminate the noise du
the frequency of the rotation of the Couette cell. This no
has an amplitude of about 0.05 s21 and corresponds to th
high frequency of the rotation of the geometry (1
!500 s). This procedure leads to the time series presente
Fig. 20~a!. The embedded attractor is constructed using
time delay method, with a delay timet540 s @Fig. 20~b!#.
The constructed attractor is qualitatively similar to t
Rössler’s one. So the recorded time series in region 3
similar to a chaotic variable of a three-dimensional dyna
cal system. To assess this property, a Poincare´ section is
plotted in Fig. 20~c! and corresponds to the plane with
normal vector (21,0,1). However, the first return ma
shown in Fig. 20~d! exhibits no simple shape. Other Poinca´
sections and other choices oft have been investigated, bu
no simpler shape has been found. We also varied the fi
and defined curvilinear abscissa on the Poincare´ section in
order to reconstruct the first return map, but no determini
application has been found.

As a conclusion of this work, we cannot assess that
recorded time series of the shear rate corresponds to dis
tive deterministic chaos of dimensionality 3, even thoug
great similarity is observed. This might be, because the s
tistic we study is very poor: up to 40 oscillations have be
studied. This might be due also to a low noisy frequen
dynamics. The studied dynamics may also correspond
four-dimensional chaotic state, but in this case the transi
to the latter requires the presence of a three-dimensi
strange attractor which has not been observed. However
cannot exclude that this result suggests that the obse
dynamics may be more complex. A few coupling effects w
space may occur and so a spatiotemporal dynamics ma
recorded, as discussed in Sec. III. Such a case does not
to a simple shape in the first close return map, as we will
later. Actually, rheology is an experimental tool used
probing the viscosity of materials. However, the measure

FIG. 20. ~a! Analysis of the experimental time series,~b! em-
bedding reconstruction of the attractor,~c! Poincare´ section,~d! first
return map constructed with the abscissaX of the Poincare´ section.
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only global: the recorded shear rate does not correspon
the local shear rate in the gap. The same occurs for the
trol parameter: a torque is imposed on the axis of the rhe
eter, but the local stress induced in the fluid is not know
These two phenomena lead to spatial structures like s
banding and vorticity banding in complex fluid as discuss
in Sec. III.

In order to illustrate this kind of effect on a three
dimensional dynamical system, we present here a simpl
lustration with the help of the Ro¨ssler system. In a cas
where local spatial structures are oscillating, the rheolog
global measure corresponds to the sum of these local s
tures. Three integrations of the Ro¨ssler system with (a,b)
5(0.3,0.3) andc54.5,4.4, and 4.7 have been made. The
variables$z1(t),z2(t),z3(t)% may correspond to local chaoti
oscillating structures. The sumZ(t) of the three different
variablesz1(t), z2(t), andz3(t), plotted in Fig. 21~a!, may
correspond to the global measure of rheological experime
The topological reconstruction of the first return map is t
same as presented above and shown in Figs. 21~b!, 21~c!,
and 21~d!. The construted attractor has a similar shape as
Rössler’s attractor, however, no deterministic shape is fou
for the first return plot. So the dynamical variableZ(t) does
not simply correspond to dissipative deterministic chaos
dimensionality 3. This illustrates that a few spatial effec
could lead to the results presented concerning the reco
shear rate. Actually, this example is very simple, spatial c
pling effects may occur between these three variables, b
more complicated case involving three oscillating variab
with nonlinear coupling terms would provide the same res
In fact, the illustration presented here does not prove th
structures, it only suggests that a few spatial structures m
lead to aperiodic time series which are not strictly chaotic
three dimensionality, even though the recorded shear ra
qualitatively similar to a three-dimensional chaotic variab
In fact, if more than three local variables were used to rec
struct a global measure, complex dynamical states as

FIG. 21. ~a! Analysis of the time seriesZ(t), ~b! embedding
reconstruction of the attractor,~c! Poincare´ section,~d! first return
map constructed with the abscissaX of the Poincare´ section.
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sented in Fig. 11 can be reproduced easily. This region d
not correspond to simple chaotic dynamic, but this may
due to a lot of spatiotemporal effects.

V. CONCLUSION

In this paper we have presented a detailed experime
study of the dynamical behavior of the rheology of a co
plex fluid near a textural instability. We have shown tha
complex behavior with different regimes as a function
time can be described. Among the most interesting regim
sustained oscillations andchaoticlike types of signals have
been observed. We have shown that the temporal depend
is related to textural changes involving the whole sample.
spend some time analyzing thechaoticlike signal, using a
careful mathematical analysis. We cannot prove that the
nal corresponds really to a three-dimensional chaotic sys
even though it has several distinctive features resemblin
three-dimensional deterministic chaotic state. To conclude
interpret the signal we have, we make the hypothesis
there is a coupling between temporal behavior and spa
instabilities involving a finite but small number of cells. W
have also shown with rheophysics tools that such spa
structures are probably in the¹v direction. A question re-
mains about the microscopic origin of the observed dyna
ics. It is obviously a complicated problem. However, we c
make some assumptions according to the experimenta
sults discussed in this paper. First, the observed perio
oscillations involves long time scales~about 10 min!. Such
time scales have been previously observed with the s
system in other experiments. Namely, it has been shown
, J

ds

a-

s

e
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the structural response of the onion texture involves ti
scales of the order of minutes. This behavior was assume
be related to the displacement of the grain boundaries of
disordered onion texture@11#. In another context it has bee
measured with neutron scattering that the smectic period
the ordered onion texture decreases with increasing s
rate@34#. It was assumed that the expelled water was stay
between the different layers of the ordered state. When
shear rate is stopped, the swelling kinetics of the compres
onion texture show strong nonlinear effects on long tim
scales@28#. Finally, the time scales of reorganization of th
onion texture between two different imposed stresses ar
the order of minutes@47#. The oscillations may be the resu
of a competition between an ordering of the disordered s
driven by the stress~mechanical ordering! and a slow tex-
tural evolution which destroys the stress-induced orde
state. These two effects may take place on different ti
scales and may produce oscillating behavior. The strong
pendence of the observed dynamics with temperature ma
explained by the dependence on temperature of the t
scales discussed above. For example, it has been shown
the time scale of the swelling kinetics depends strongly
the temperature, due to the presence of thermally activa
defects in the lamellar phase@28#.
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