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Dynamical behavior of a complex fluid near an out-of-equilibrium transition:
Approaching simple rheological chaos
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We report here an extensive study of sustained oscillations of the viscosity of a complex fluid near an
out-of-equilibrium transition. Using well defined protocols, we perform rheological measurements of the onion
texture near a layering transition in a Couette flow. This complex fluid exhibits sustained oscillations of the
viscosity, on a large time scal®00 9 at controlled stress. These oscillations are directly correlated to an
oscillating microstructural change of the texture of the fluid. We observe a great diversity of dynamical
behavior and show that there is a coupling with spatial effects iVthalirection. This is in agreement with
a careful analysis of the temporal series of the viscosity with the dynamical system theory. This analysis
indicates that the observed dynamical responses do not strictly correspond to three-dimensional chaotic states,
probably because some spatiotemporal effects are present and are likely to play an important role.
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[. INTRODUCTION but some authors suggest different scenarios: coupling with
shear induced structurg49], mechanical instability in a
Foams, pastes, liquid crystals, polymers, and emulsionshear banding cag@1], or coupling with elastic instabilities
all share a common property: when submitted to a shedrl8]. It has also been suggested that the rheology of worm-
flow, they exhibit various unusual behaviors. They arelike micelles can exhibit chaotic behavid@1l]. Theoretically,
known ascomplex fluids Rheological properties of these With & microscopic model some authors fouretochaosin
types of materials have been extensively studied mainly behe rheology of a nematic liquid crystg24]. Other authors
cause they exhibit non-Newtonian behavior. If in terms ofProposed theoretical mode]25], based on the equations of

mechanical behavior, these systems have been relatively wéfl€ rheology of soft glassy materidts2], in which sustained
described, the question of the microscopic origin of thes scillations of the shear rate at an imposed stress take place.

effects has only been addressed more recently. Indeed, afy rece_ntly, the same authors have fou_rhrdaocha_osm
complex fluids have a macromolecular architecture whichsuch spatially homogeno_us modgP]. The a|m_of this pa-
leads to a coupling between their structures and the flow. | eristo make an extensive study of an expenmental system
) . " “where sustained oscillations have been previously observed
the_ 192.305’ the development of techmques allowing the e 19]. In the system studied here, a close-compact assembly
amination of .the structu_reT of the fluids 'under shear allowe f soft elastic spherenions [27,28, it has been assessed
the community of physicists to have, in parallel, informa- oajier[29] that the theory of bifurcations may be a guide for
tions on the rheological behavior and on the microstructurgne ynderstanding of the temporal rheological behavior of the
under flow[1-3]. One of the questions addressed by thiscomplex fluid. This paper presents important experimental
type of approach is related to the very nature of the couplingesults concerning the great diversity of temporal observed
between structure and flow; indeed, this coupling mayresponses near an out-of-equilibrium transition. In a first step
modify the structure of the fluid undergoing shear flow. It iswe carefully study using several protocols the temporal be-
now quite clear that a purely mechanical approach is nohavior of the rheological signals. We try to evidence a dy-
enough to understand the experimental behajdgs]. Re-  namical scenario which may indicate the presence of an
cently, many different experimental systems have shown thatlopf bifurcation. In a second part we relate this rheological
shear can be coupled to a thermodynamical phase transitiddehavior to the structural evolution of the fluid using light
[7,8,6], but new types of organization may appear underscattering. The last part of the work is related to a careful
shear which do not exist at ref9,3,10. Theoretical ap- analysis of the complex temporal behavior obtain in certain
proaches tried to describe this complex behavior as a cowasegresembling chagsWe show with the help of dynami-
pling between hydrodynamics and thermodynamics. Everal system theory that the oscillating viscosity may not sim-
though some success in this way can be notjd@d-17, we  ply be described with a three-dimensional dynamical system,
are far from having a satisfying description of the steadyprobably because spatiotemporal effects are playing an im-
behavior of these systems under shear. portant role.
Besides the understanding of the structure under steady
shear .and because these systems.exhibit out—'of—equilibriurn Il. DYNAMICAL BEHAVIOR OF THE RHEOLOGY
transitions, we do expect an even richer behavior. Indeed, it OF THE ONION TEXTURE
has been shown experimentally that near out-of-equilibrium
transitions, the temporal behavior of the viscosity of a com- The complex fluid we consider here is a lyotropic lamellar
plex fluid, namely, lyotropic systems, may exhibit sustainedphase prepared with sodium dodecy! sulfe@@é wt %, oc-
oscillations[18—23. The origin of the latter is still unknown, tanol (7.8 wt % and water salted with 20 gt of sodium
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FIG. 1. Experimental setup, a thermostated pl{at# shown on
the top of the cell allows one to avoid evaporation.

chloride. At equilibrium, this phase is made of membranes
(surfactant bilayepsof thicknesss=2 nm, regularly stacked
and separated by solvent. The distance between the lamellae,
the smectic periodl, measured with neutron scattering, is
about 15 nm[30]. Such a system is stabilized by entropic
interactions due to exclusion between the undulating mem-
branes[31]. This system is sensitive to temperature: at
34°C, a diphasic sponge-lamellar mixture appg¢ags33.

To probe the rheological properties of this complex fluid,
we use the experimental device presented in Fig. 1. In order
to measure the viscosity, the lamellar phase is confined in
Mooney-Couette cells with gap=1 mm or e=0.5 mm,
heighth=30 mm, and inner radiuR=24 mm. A stress con- (

trolled rheometefAR1000 TA Instrumentallows us to im-
pose a torque on the axis, on which the rotor is fixed, as to :
induce a controlled stress in the fluid. The rheometer ]
records continuously the shear rateas a function of time; -

the time scale of this measurement is very short compared to ﬁ ! 3 ‘gz

the time scales of the experiment. In order to follow the ,
effect of shear on the microstructure of the phase, the cell is
totally transparent and two lasefide-Ne 15 mW give the e
diffraction patterns at different heights in the cell. The pat-
terns are collected on a screen and digitalized with a charge-
coupled devicé CCD) cameraCohu. Since the laser beams

go through the sample twice, one obtains two diffraction FIG. 2. Diffraction f btained under sh Ri ¢
rings. The diffraction pattern corresponding to the first_ ' = 0 'furz""zc '?]gxggfr?; Oat'?el:]me) #gxsroia?ei)attell’r:‘lg 0
sample has an ellipsoidal shape due to the optical deforma: 9 y 9 P g g P '
;uons) of”:he Coue(;te cel(lplalymg t?e rolfa Of. alcy_lmdlrlcal_ studied previously27,28. It has been shown that shear con-

ens. The second sample leads fo a classical cireular gy, ¢ he texture of the lamellar phase, and a series of textural

TemperatureT is controlled within=0.1°C using a water L b d asis i d I le liah
circulation around the celthe range of variation of the latter transitions are observed gsis increased. Small-angle light

is about +0.04°C). The experimental behavior 0bservedscattering allows us to characterize the different textures

here depends strongly on the sample, namely, on the conceW—hiCh can be obtained at different stress. At low shear rates,

tration of octanol. With a classical setup, we observed that? S! - : )
after a few hour$2—3 B, we have a significant change in the typical shear rate of 1°¢, the texture changes radically: the

composition due to the evaporation of octanol and water. Tgnémbranes are wrapped in multilamellar vesictesied on-
control the evaporation of octanol and water and their conlons)’ close compact organized. Th(_a size of these onions Is of
densation on the top of the cell, the latter is closed with athe order of microns, and scales with shear rate according to

thermostated plate, which allows up to 80 h experiment®~y "% The diffraction pattern is an homogeneous ring
with the same sample and a negligible evaporation. [cf. Fig. 2a)], indicating that there is no long-range correla-
The effect of shear on this system has been extensivelgions between onions. Af~15 s !, six fuzzy peaks appear

state of partially oriented lamellar phase is observed; at a
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FIG. 3. Flow curve af=26°C, e=1 mm. The regions A, B, FIG. 4. Temporal responses of the shear rate for the range 14
and C correspond to the different diffraction patterns shown in Fig—17.5 Pa of imposed stress with incremeht=0.5 Pa, corre-
2. sponding to the flow curve shown in Fig. 3.

on the ring[cf. Fig. 2b)]. This corresponds to thieyering  about 500 s, this oscillating regime disappears after 6—7 h
transition[27,34]: the onions now exhibit a long-range ori- and anasymptotic stationargtate is reached after 25000 s:
entational order under she@vhich is conserved and evolved the nonlinear rheology of this system exhibits a very long
into a long-range positional order when the shear is stoppedime of asymptotization near the out-of-equilibrium transi-
[27,28. In this regime, two-dimensional layers of onions tion. The second recorded behavior reproduced in Fig). 5
with hexagonal order slide onto each other. This transition i1as been obtained with the same stress. The asymptotic state
named the layering transition after a similar disorder/orderfor the shear rate differs from the first experiment, this state
transition was observed in colloids under shg2B]. When  corresponds to a noisy complex dynamical response, no sta-
the shear rate is increased, the peaks on the ring becontienary shear rate can easily be defined. This illustrates the
more contrasted, as shown in FigcR It is impossible to  strong dependence on initial conditions for the onset of the
assess whether or not the diffraction pattern shown in Figtemporal instabilities.

2(b) corresponds to a coexistence of the two different tex- The region of dynamical behavior of the viscosity seems
tures or to weak spatial correlations. The spots with waveo vanish whenT approaches 27 °C. A convenient way to
vectors along the rheometer axis are less intense than thepresent all these effects is to usshear diagramwhere
others. This is due to the zig-zag motion of the planes oktationarytextures are plotted as a functionbandy. Such
onions when sliding on to each oth@5]. a diagram is plotted in Fig. 6.

Actually, the layering transition exhibits different rheo-  ag suggested in an earlier wofl9], in the region of
logical behavior when the temperature is changed. When parameters where dynamical reponses occur, the rheological
<27 °C, the rheological flow curves vs y are continuous. behavior represented by the flow curve must be associated
It is always possible to define an asymptotic stationary valuavith the temporal responses of the shear rate. In order to
for the measured shear rate. A typical flow cumves y, for ~ show the differentasymptoticdynamical responses of the
T=26°C ande=1 mm is shown in F|g 3. Each point cor- shear rate in the V|C|n|ty of the Iayering tranSition, we must
responds to a stationary state of the shear rate. The differeflefine a protocol in order to get enough reproducibility in the
regions A, B, and C shown in the flow curve correspond toflow curveso vs y. Two parameters are important: the stress
the different diffraction patterns, respectively, shown in Figs.incrementdo between two different imposed stresses, and
2(a), 2(b), and Zc). In Fig. 4 are shown the temporal re- the time intervalst where we wait before changing the ap-
sponses of the shear rate for the range-14.5 Pa and an plied stress. Ifst<1000 s, the different flow curves are not
increment of stress of 0.5 Pa. The temporal behavior of theeproducible and depend drastically on the initial conditions.
shear rate becomes noisier as the critical stoess16 Pais If So=1 Pa we may miss the dynamical region because of
approached. The Fourier transforms of these time series exis narrowness. Protocols with larg# and small o will
bit no peaks, so there is no characteristic time in the recordedorrespond tajuasistaticapproaches of the transition. Actu-
noisy shear rate. ally, compromises have been found to use the most quasi-

WhenT=27°C and stress is imposed, there is a regiorstatic approach. We are limited by the evaporation of the
where it is difficult to define a stationary viscosity. Typical sample which gives us a maximum of the accessible experi-
shear rate responses, on a fresh sample, at an imposed strassntal time(about 80 I,
near the critical stress. of the layering transition and at a For a systematic study we decided to use two different
temperatureT=31°C are shown in Fig. 5; the stationary protocols to test the quality of the quasistatic approach that
disordered onion texture appears after about 30 min, as seere have. We have also used different geometries to try to
with light scattering. In Fig. &), after 10 000 s, the recorded separate temporal dependence instabilities from spatial struc-
shear rate exhibits transitory oscillations with a period oftures(cf. Sec. Il). For that we made several Couette cells
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FIG. 5. Typical shear rate responses at an imposed stves4% Pa,T=31°C) near the layering transition.

corresponding to different heights and different gaps. Weprotocol (protocol II, 5t~15000 s ando~0.1 Pa) will be

will mainly discuss here the effect of the gap: two different discussed later. The different values reported in Fig. 7 corre-
ones have been studi¢tl mm and 0.5 mm Figure 7 shows spond to the mean values of the asymptotic recorded shear
two flow curves for two different protocols, both of them rate, and arrows represent oscillations with a great amplitude
with a gape=1 mm. In protocol I,6t=7200 s anddo  between the maximum and the minimum value of the oscil-
=0.5 Pa. The stress is first increased from 13 to 19 Pa angting shear rate. Figure 8 shows schematically, for more
then decreased from 19 to 13 Pa. The results of the secongnvenience, the different results of these protocols. Solid

lines correspond to asymptotic stable states and dashed lines
/2

A A .," e, N
Loe 19 @
. ! o x
5 T Qv : 18 o x 1
RRRERR o x
—_ Temporal : —_ 17t “O——> -
— . agey: : 3]
I instabilities 5 e -——
2z R RRRnRuNe @ 16l x O -
% 15 gz % &;ﬂ
o p=] -
§ 75} 154 &. 4
& 0
14} x i
1 - X
%E% ...
} } - 10 20 30 40 50 60 70 80 90
27 31 Shear rate (s ™)

Temperature (°C)
FIG. 7. Different flow curves witlT =30 °C ande=1 mm, for
FIG. 6. Shear diagram of the lyotropic lamellar phase studiediwo different experimental procedures.corresponds to protocol |,
the gray region corresponds to nonstationary shear rate responsessaess upO corresponds to protocol I, stress downcorresponds
controlled stress. to protocol II.
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lines), metastable staté¢glashed lingin the vicinity of the layering
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The flow curve, with protocol I, exhibits six regions of

different temporal responses gfdisplayed in Fig. 9.

On the way up, the following regions are seen
Region 1(A—B): Relaxation to a stationary state of dis-

ordered oniongFig. (a)].

Region 2(B—C). This is a branch that is followed on the

PHYSICAL REVIEW E 66, 031505 (2002

Region 3(C). The shear rate begins to oscillate after the
transient phase with a period of 500 s and an amplitude of
about 5 s [Fig. 9c)]. At the same time, six fuzzy peaks
appear on the diffraction ring, indicating the onset of spatial
correlation between oniorigf. Fig. 2b)].

Region 4(C— D). The shear rate shows oscillations with
a large amplitude of 157¢ (this corresponds roughly to the
distance between the branch@s-D andG—E) and with a
period of about 500 §Fig. 9(d)]. In this regime the diffrac-
tion pattern clearly shows a temporal correlation between the
structure of the sample and these oscillations. Modulation of
the scattering pattern is observed on the time scale of the
rheological signal. When we wait long enough, we end up
going to the branclé — E, which is the one followed on the
way down.

Region 5(E—F). The shear rate relaxes on a noisy sta-
tionary branchFig. 9e)]. The corresponding texture corre-
sponds to the diffraction pattern shown in Figc)2

On the way down, the following region is seen.

Region 6(E—B). A complex dynamical state appears
progressively. The main period is 300 s and the greatest am-
plitude is about 5 s* [Fig. 9(f)]. This complex dynamics
also disappears when approachig

We will come back to the problem of analyzing the signal
in the last part of this paper. Note, however, that on the way
down the branch followed is different from the one followed
on the way up. Protocol | allows us to record transitory be-
havior, which reveals a hysteresis loop and oscillating vis-
cosity. As predicted by the dynamical system theory, one can
expect richer dynamical behavior when asymptotic states are
reached in the vicinity of hysteresis and oscillating bifurca-

way up; noise appears with a characteristic period of 500 sons[36,37. We have seen that transient phases longer than

and an amplitude of about 1" §[Fig. 9b)]. Note that even
when we wait for a very long time with a different protocol,
no transition seems to appear to the braBech G (we will
see that this is different from the bran€h-D).
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6t=7200 s may occur with this system. So in order to get a
better understanding, the experiments were repeated with
S8t~15000 s andSo~0.1 Pa(protocol Il in Fig. 7. In this
protocol, stress is imposed froB to C. At the pointC, a
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FIG. 9. Different dynamical

responses of the shear rate in the
vicinity of the layering transition
with e=1 mm. Note the different
amplitudes of these temporal re-
ponses(a) Region 1 =13 Pa),
(b) region 2 (=15.5 Pa),(c) re-
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FIG. 12. Typical time series showing the simplification of the

FIG. 10. Aperiodic time serieg(t) in region 3. dynamics of region 6 when approaching.

slow drift of shear rate into region 6 to the poi@t takes shown in Fig. 12 of the complex dynamics of region 6. To
place. Then the stress is imposed fr@o A. With protocol the precision of the protocol ~15000s and do

I, rggion 4 dogs not exist. The way fo]lowed s rggiomz ~0.1 Pa), no simpler dynamics has been recorded. The main
reg|oré3—> reglonl 6. The Iarg% oscnlatlonsb?f (rjeglon_ 4 ob- gifference between the two protocdise., the disparition of
served in protoco I. correspond to metastable ynartiies region 4 is a well known characteristic of hysteresis behav-
they do not exist if we wait long enoughThis protocol ior: the hysteresis loop is largeB(~D—E—B in protocol
allows us to record asymptotic states of the oscillating vis—l) with a small interval of timest than for largerst (B
cosity: in the vicinity of the pointC (region 3, aperiodic _.C—G—B in protocol 1)) [38]. With protocol Il we can
oscillations of the shear rate are recorded with a period Ogssess that the loofB(C— G—B) corresponds to a real
500 s and an amplitude of 3'5 (Fig. 10. This aperiodic hysteresis loop between region 2 and region 6.

time series corresponds to oscillations between a fixed mini- The same rheological measurements were performed with
mum value (12 s %) and a nonfixed maximum value. The a gape= 0.5 mm with the protocol I, but from 14.5 to 18 Pa

region of existence of the latter is very thin, about 0.05 Paand from 18 to 13.5 Pa. The corres : -
! : . . ponding flow curve is

and the transient phases take about 5 h. So up to 80 oscillg; P :

tions have been recorded before the slow di§t¢G) of Shown in Fig. 13. The flow curves with the g 0.5 and

the shear rate into the region of complex dynanfiegion § e=1 mm are similar. The confinement does not strongly af-
9 P y €8 fect the complexity we observed because all the dynamical

takes place. The dynamics in region 6 shown in Fig. 11 cor; cenariogi.e., the six regions in a nonasymptotic protgcol

responds to a complex dynamical state, with a period o : . o
about 300 s. When stress goes down approaching Bothe re observed. The hysteresis loop and the different oscillating

quasistatic protocol Il allows us to show the simplification

19p .
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Time (s) FIG. 13. Flow curve withT=30°C ande=0.5 mm for the
_ experimental protocol IX corresponds to protocol I, stress up.
FIG. 11. Complex dynamical time serig4t) in region 6. corresponds to protocol |, stress down.
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e ' ' ' ' @ dered state. In fact, there are also macroscopic instabilities
that occur in complex fluids: bands in the vorticity direction
and in theVuv direction may appear in the vicinity of out-of-
equilibrium transitiongvorticity and shear bandingThese
instabilities have been extensively studied both theoretically
and experimentally8,39—41. These macroscopic instabili-

0 50 1000 1500 2000 2500 ties may lead to a coupling with the dynamical observed
Time (s) behavior in our system. In this section, we report arguments
. . to show that the vorticity direction is irrelevant to the dy-
(b)_ namical recorded shear rate and we suggest that coupling
with spatial structures in th€v direction may occur.

o 1 Observing the sample with naked eyes allows us to see
m_\/\/\/\’/\/_ quite a lot of inhomogeneities in the vorticity direction.
These inhomogeneities can be described as horizontal bands.

o = p— o These bands have a weak contrast and delimit the Couette
Time (s) cell into different regions of turbidity. There is also no selec-
tion of a wavelength, and thus no systematic number or size
FIG. 14. Shear rate oscillations in region 4 for two different of bands have been seen. The typical range of observed size
geometries(a) e=0.5 mm, (b) e=1 mm. is 0.1 mm to 10 mm. These bands appear systematically
during transient phases and rarely in asymptotic states. They
regimes still exist in the small gap. However, some rheologi-appear roughly at the level of poiBtand persist until point
cal differences must be noticed: F. The dynamics of these bands does not seem to be corre-
In a nonasymptotic protocol, as shown in Fig. 14, largerated to the dynamical recorded viscosity. To better under-
oscillations in region 4 (208 —50 s 1) are obtained with  stand the coupling between these macroscopic structures and
e=0.5 mm more easily than with the larger gap (25 s rheology, we decide to use the diffraction patterns recorded
—40 s Y). They also have a more relaxational shape tharon the CCD(cf. Fig. 1) at two different heights in the cell.
for the larger gagi.e., the transition from low values to high The direct beam of the laser is hidden by a beam stop to
values is sharper avoid the saturation of the signal. A contrast parametean
The hysteresiscycle (B—D—E—B) still exists, but is  be defined. It is convenient to define it as naught in the high
larger in the confined geometry than fe=1 mm (cf. Figs.  symmetry texture(disordered state of onigrand different
7 and 13,5,~15s %, y;~55s ! for e=0.5 mm andy, from zero in the low symmetry texturéayered state We
: chose to definep as the difference between the mean inten-
sity of scattered light in a region of the ring where a peak
appears and the mean intensity in a region of the ring where

These effects will be discussed in the following section.n® peak ever appeafst. Fig. 2. In a region where no struc-

We have seen that a very rich temporal dependence behaviBfral changes. occur, we checked thfatioes not depepd on

is seen approaching a layering transition. Several protocolde shear ratey. In fact, below pointB and above poinE,
have been followed together with different cells. We havethe stationary states correspond, respectively, to a ring of
shown that there exists a true hysteresis loop which persisattering ¢p=0) and a modulation of scattered light on the
when the sampling time of the experiment is increased an#éing (¢>0). Figure 15 shows contrast parametersnea-
which depends on the geometry of the experiment. We havgured at two different heightg andz, (||z;—2z,||~1 cm) in

also seen that sustained oscillations can be observed, but irfle Couette cell and the corresponding oscillating shear rate
metastable way. A very rich signal can also be obtainedn region 4. The similarity between the three time series is
which can eventually be seen as chaotic. In what follows wedbvious. Thelocal measures ofp (only integrated into the
will address first the nature of the temporal dependences/v direction at two different heights, are directly correlated
More specifically, we want to understand how much thesdo the global measure of the shear rate. This demonstrates
temporal dependences are related to textural changes. Thdhat the shear rate oscillations, if coupled with macroscopic

we will try to address the question of the nature of the com-Spatial structures, are invariant undeez-&ranslation in the
plex signal(whether it is chaotic or not Couette cell even though inhomogeneities can be observed.

The results shown in Fig. 15 af® the existence of correla-
tions between the oscillating viscosity and the microstructure
of the phase, andi) their presence in all the height of the
cell. Indeed, we tried different Couette cells presenting dif-
We have seen that complex dynamics can be described fierent height$30 and 10 mm No spectacular changes were
this system. A previous work has shown that the observedbserved in the temporal dependence of the signal and the
oscillations of shear rate were correlated to structurabbserved dynamical scenario is still present. These observa-
changes in this complex fluid systdd9]: the fluid oscillates  tions are still comforting us, in the fact that vorticity (at
between high shear rate values corresponding to the layerdilst approximation irrelevant to the dynamical scenario we
state and low shear rate values corresponding to the disoobserve. The change in the gap was, by far, more spectacular.

Shear rate (s_l)

Shear rate (s_l)

~15s!, y;~45s ! for e=1 mm).
With the gape=1 mm, the branchF—G does not
strictly correspond to the branéd—F (cf. Fig. 7).

Ill. ACOUPLING BETWEEN TEMPORAL INSTABILITIES,
STRUCTURE AND SPATIAL INSTABILITIES
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FIG. 15. Correlation between two contrast parametiest two FIG. 17. Correlation between the contrast parametéi<) and

different heights in the Couette celk( with a gape=0.5 mm and  y(t) (solid line) in region 4 with gape=1 mm.
¥(t) (solid line) in region 4.
contrast parameter does not oscillate sharply between zero
In the preceding section, rheological measurements werand a nonzero value: there is already an anisotropy of the
performed in two different geometries with different gaps. Aring in this region. The system oscillates between a state
confinement in the gap may change the observed dynamicsifhere spatial correlations are we@ddw shear rate valugso
spatial structures lying in th€uv direction were oscillating. a state where the latter are strofiggh shear rate valugdn
In fact, the flow curves witle=0.5 mm are quite similar to the larger gap, the region 4 corresponds to oscillations be-
the flow curves withe=1 mm and the mean periods of the tween a mixture of these states. So this may correspond to a
recorded oscillations are equivalent, but some rheologicadeparation in different oscillating ordered structures in the
differences were noticed above. There is a new differenc& v direction. If such spatial structures in th& direction
when correlation with microstructure is done. The large oswere existing, the flow curves will depend on the gap since
cillations observed in a nonasymptotic protocol with spatial effects between oscillating structures may be stronger
=0.5 mm are directly correlated with the contrast parameteiin the large gap than in the small gap. This may explain the
as shown in Fig. 16. The complex fluid oscillates betweerobserved difference betwedh—G and G—F in the flow
the two brancheg&disordered state and layered sjaimce ¢ curve in Fig. 7. The schematic flow curve presented in Fig. 8
oscillates between zei@sotropy of the ring and a non-zero corresponds to a homogenous case, well fitted by the real
value (peaks on the ring region 4 corresponds to homoge- flow curve measured witle=0.5 mm. These observations
neous relaxational oscillations for the small gap. For thesuggest that th&v direction is relevant for the dynamical
larger geometry =1 mm), there is also correlation be- observed scenario.
tween structure and flow as shown in Fig. 17. However, the To summarize the results of this section, there are argu-
ments to show that the observed dynamical complexity does
' ; ' 5 not dependat first approximationon the vorticity direction.
: : : : It depends more on thEv direction. However, the strong
differences between the two geometries=(1 mm ande
=0.5 mm) are observed only in the metastable region. In
particular, to the precision of the devicét&15000 s and
60~0.05 Pa), no simplifications of the dynamics of the vis-
cosity were observed with the small gap. We will come back
to these results in Sec. IV.

IV. ANALYSIS OF THE DYNAMICAL BEHAVIOR OF
VISCOSITY WITH DYNAMICAL SYSTEM THEORY

Shear rate (s_l) and ¢

At this stage, we would like to spend some time analyzing
v the observed experimental behavior, following the out-of-
o000 3000 2000 5000 equilibrium theories which have been experimentally and
Time (s) theoretically developed in the last 30 years. In particular, the
complex signal that we observed on branchBs+D and
FIG. 16. Correlation between the contrast paramétéik) and  E—B) could eventually be described with low-dimensional
¥(t) (solid line) in region 4 with gape=0.5 mm. dynamical systems, as recently suggested on other complex
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fluids [21]. To assess low-dimensional chaotic properties, F(t

there exist mainly three techniques based on the properties of

low-dimensional dynamical system@) to exhibit thetran- Stable limit cycle

sition to chaos (ii) to exhibit the deterministic application

which creates a strange attractor, afiid) to compute the

metric invariants of a strange attractp42]. The latter

method has been used in the following woflXl] in the

context of rheology of wormlike micelles, but this method

required a very long time series to give good estimates of the

metric invariants(such time cannot be reached in typical

rheological experimentsMoreover there are no theories that )

can give errors for these invariani42], and, finally, this )

method does not provide the topological properties of a Stationary stable state

strange attractor. For these reasons, we have followed the

other two methods to analyze our data. For that we need to

recall some basic principles of dynamical system theory and

we will use these principles as a framework to analyze our FIG. 18. Subcritical Hopf bifurcation and transition to chaes;

data. corresponds to the loss of stability of the stationary state. At stress
Dynamical system theory describes the properties of soe,, a limit cycle exists, but betweeN and P, transition to chaos

lutions of dynamical systems which are sets of ordinary dif-may occur.

ferential equations. A dynamical system can be written as

. form theoremmay allow us to reduce the complexity of the
X=f(X,n), (1) equations to a simple equation called treemal form which
described the dynamics in the vinicity of the bifurcation.
whereX is ann-dimensional vector which evolves according Since the bifurcations are not generically simultaneous, the
to Eq.(1). u is ap-dimensional vector of parameters which dynamics can be reduced to a low-dimensional dynamical
controls the mathematical form of the functiénThe solu-  system with the dimension increasing from 1 as the control
tions of Eq.(1) can be seen as trajectories in-dimensional  parameters are changed. This theorem involves that for com-
space called thphase spaceThese trajectories cannot cross plex systemslike rheology of complex fluilwe may expect
each other due to the unicity of solution for a given initial that the dynamical aperiodic states near an out-of-
condition. In a lot of physical systems, dissipation of energyequilibrium transition can be expressed as the solutions of a
occurs, this characterizesdissipativesystem. In such sys-  three-dimensional dynamical system.
tems, after a transient phase, all the trajectories collapse on a |n the experiment described above, two parametecsn
SubspaceA, called theattractor. The dimension of this at- be used: the stress and the temperatur'é. Previous|y, dif-
tractor has the following property due to dissipatiaif:A)  ferent regimes of dynamical behavior of the viscosity have
<n. The topological properties of the attractor are of majorpeen presented. Namely, the aperiodic oscillations recorded
importance to study thasymptoticsolutions of a dissipative in the vicinity of the pointC (Fig. 10 may be described with
dynamical system. a three-dimensional dynamical chaotic system. As discussed
Dissipative dynamical systems of dimension 3 may ex-above, if this dynamics corresponds to a chaotic state, a tran-
hibit solutions which are aperiodiet3]. Such solutions are sition to chaos should be present, in particular, a Hopf bifur-
extremely sensitive to initial conditions and their dynamicscation leading to a limit stable cycle should exige., a
cannot be predicted. Such solutions are cadledoticsolu-  perjodic statg This Hopf bifurcation may lead to the behav-
tions. In low-dimensional dissipative dynamical systemsjor of Fig. 9Ab), where, before any transition, the stationary
with n=3, which exhibit chaotic solutions, the mathematical state becomes noisy with a period that is the same as in the
condition 2<d(.A)<3 for the dimension of the attractor is aperiodic state. This phenomenom is calidchastic reso-
required. As a result, such an attractor frastal properties  nanceand corresponds to the amplification of noise near a
and is called strange attractor Hopf bifurcation[46]. In fact, at the precision of the device
In the theory of dynamical systems, the solution evolveq §o0~0.01 Pa, t~15000 s, andST=0.1°C) when stress
from a stationary staté.e., X=0) to a chaotic state follow- or temperature is varied no periodic asymptotic viscosity has
ing a set of bifurcations ag is changed. A bifurcation is the been recorded before this aperiodic state. So if a Hopf bifur-
passage from a solution to another which is not topologicallycation exists, which is necessary to create a chaotic dynam-
equivalent to the firsf44,45. The set of bifurcations neces- ics, it must be subcritical. Such a case is shown in Fig. 18,
sary to create a strange attractor is called tla@sitionto ~ where the chosen parameter is stress. Wherv;, the sta-
chaos. Experimentally, to show such a transition by changingjonary state is stable, and there is just stochastic resonance
the parameterg of the experiment is a strong proof for the when stress approaches (region 2. At stresso;, a stable
existence of a chaotic state. limit cycle appears with a finite amplitude. Between and
In a lot of physical systems, the presumed model whicho,, the stable stationary state and the stable limit cycle co-
reproduces the dynamics may have a high number of equaxist, but some bifurcations may arise on the cycle which
tions. However, when approaching a bifurcation, tleemal  lead to a chaotic dynamicN( P). Wheno> o>, the sta-

Stationary unstable state
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tionary state is no longer stable and the stable asymptotic @
state corresponds to a chaotic state. This scenario coull ™
eventually correspond to the observed experimental one: re = 8
gion 1— region 2— region 3. In order to assess this hypoth- | °

esis, when stress oscillates aperiodicallyrat o, in region ¢

3, and when stress goes down on the braRehN, we may 2

expect simplification to a periodic state. To the precision e T T
60~0.01 Pa andst~15000 s, no periodic viscosity has t x10°
been recorded. This observation means that — o,

=<0.01 Pa. Such an observation has also been checked wit _: " x ()
temperature as the parameter. As discussed in Sec. lll, n .

simpler dynamics arise when approaching pdthtwhen S .

stress goes down from region 6. The only transition we ob- *
served is the recorded time series shown in Fig. 12. So, foi -t x
the transitionG— B— A, no Hopf bifurcation has been seen. -2 P B x;;
However, the dynamical responses of the shear rate in th X

vicinity of points B (Fig. 12 and C [Figs. 5 and )]
§trongly suggest the presence of subcritical Hopf bifurca- g 19. (a) Solutionz(t) of the Rassler system(b) embedding
tions. reconstruction of the attractofg) Poincaresection, and(d) first
Since no success in showing the scenario related to @turn map constructed with the abscissaf the Poincaresection.
Hopf bifurcation has been obtained, one could eventually try
to analyze the signal obtained in the aperiodic regime. For
that we can use techniques that have been developed to dem- .
onstrate the chaotic nature of experimental data. There are a y=Xx+ay,
lot of methods to assess whether or not a recorded time series 7=b+2(x—c) )
is chaotic of low dimensionality. They involve different in- '

variants: metric, dynamic, and topolodi2]. The first two  gych a system exhibits chaotic solutions for the given param-
methods compute the metric and dynamic invariants of &ters. The numerical integration of this system is shown in
strange attractor, such as Lyapunov exponents and varioySqg. 19a), where the variable(t) is reproduced. In Fig.
dimensions of the strange attractor. No statistical theory eX19(h) is the embedded corresponding attractor with a delay
ists that assigns errors to the latter, so it is impossible t§me =20 shown, which corresponds te~T,/40, where
determine the validity of the computed invariants. In oury 'is the mean period of the signal. To show deterministic
case, the time series recorded in region 3 contains up 10 &haos, one may find the deterministic application which gen-
oscillations, so it is impossible to use those methods. Therates the strange attractor. This topological approach is
third method is based on the topological properties of thg)zseq on the study of the Poincaetion which corresponds
strange attractor. Currently, 100 oscillations are enough @, the intersection of the trajectories lying on the attractor
assess chaotic dynamics. Moreover, the sampling time intenq 4 plane. Such a Poincasection is constructed and plot-
val is 1 s in therecorded time series, which leads to 500+eq in Fig. 19c). The chosen Poincasection corresponds to
points per cycle: this is enough to use the method. Strangg,e plane defined by the normal vecter 1,0,1) in the frame
attractors are topological objects with fractal properties{z(t),z(t_i_ 7),z(t+27)]. The Poincaresection is a line and
which allow us to have theensitive to initial conditions s corresponds to the dissipation of thé sRler system.
property between two trajectories. To compute a strange a{yhen X171 VS X, is plotted, whereX, corresponds to the
tractor using a time series, one may use the embedding thegpgissa on the Poincasection of thek intersection of the
rem. Such a theorem conjectures that, for a dynamical Sy%?ajectory with the lattefshown in Fig. 18d)], the corre-
tem like Eq.(1), the attractort4 constructed with the natural sponding curve has a determined shape with a single maxi-
variables{X;(t)} is topologically equivalent to the construc- um and a slope that is greater than 1 at the intersection
tion of A with the following variables: {X;(t),Xi(t  \jth the bisecting line. This is called thst return map
+7),Xi(t+27), ...}. This is called thetime delay embed- The time series shown in Fig. (@ cannot be predicted, but
ding. The delay timer is arbitrary but a useful choice must he construction of the attractot, the Poincaresection, and
be found to study an experimental time series. Other embedinajly the first return map, reveal the deterministic applica-
ding variables can be used, such{Xs(t),X;(t),X;(t), ...} tion which is characteristic of a deterministic dissipative cha-
and other combinations. The embedding theorem allows ibtic dynamical system. The shape of the first return map
when just one variable is measured, as in a lot of experimenallows one to predict thek(+ 1) intersection of the trajectory
tal devices, to reconstruct the attractdrwithout knowing  with the Poincaresection if thek intersection is known: this
all the variables of the dynamical system. is the deterministic property of the equations. However the
Let us first present a typical case. We will use this case irsingle-humped shape of the first return map, with an average
a modified way at the end of the paper. Such a construction islope greater than 1, permits one to have the sensitive to
given for the Rasler system withd,b,c)=(0.3,0.3,4.5), initial conditions property between two trajectories.

X=—-y—z,
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FIG. 20. (a) Analysis of the experimental time serigb) em-
bedding reconstruction of the attract(m) Poincaresection,(d) first
return map constructed with the abscissaf the Poincareection.

FIG. 21. (a) Analysis of the time serieZ(t), (b) embedding
reconstruction of the attractof) Poincaresection,(d) first return
map constructed with the absciséaf the Poincaresection.

In the experimental time series recorded, we have care-
fully followed the same analysis. Preliminarily, a high- only global: the recorded shear rate does not correspond to
frequency filter has been used to eliminate the noise due tthe local shear rate in the gap. The same occurs for the con-
the frequency of the rotation of the Couette cell. This noiserol parameter: a torque is imposed on the axis of the rheom-
has an amplitude of about 0.05%and corresponds to the eter, but the local stress induced in the fluid is not known.
high frequency of the rotation of the geometry (10 These two phenomena lead to spatial structures like shear
<500 s). This procedure leads to the time series presented banding and vorticity banding in complex fluid as discussed
Fig. 20a). The embedded attractor is constructed using thén Sec. Ill.
time delay method, with a delay time=40 s[Fig. 2Qb)]. In order to illustrate this kind of effect on a three-
The constructed attractor is qualitatively similar to thedimensional dynamical system, we present here a simple il-
Réssler's one. So the recorded time series in region 3 isustration with the help of the Rwsler system. In a case
similar to a chaotic variable of a three-dimensional dynami-where local spatial structures are oscillating, the rheological
cal system. To assess this property, a Poincaetion is global measure corresponds to the sum of these local struc-
plotted in Fig. 20c) and corresponds to the plane with a tures. Three integrations of the &er system with &,b)
normal vector ~1,0,1). However, the first return map =(0.3,0.3) andc=4.5,4.4, and 4.7 have been made. These
shown in Fig. 20d) exhibits no simple shape. Other Poincare variables{z;(t),z,(t),zs(t)} may correspond to local chaotic
sections and other choices efhave been investigated, but oscillating structures. The suid(t) of the three different
no simpler shape has been found. We also varied the filterariablesz,(t), z,(t), andzs(t), plotted in Fig. 21a), may
and defined curvilinear abscissa on the Poineaetion in  correspond to the global measure of rheological experiments.
order to reconstruct the first return map, but no deterministid’he topological reconstruction of the first return map is the
application has been found. same as presented above and shown in Fig&)221(c),

As a conclusion of this work, we cannot assess that thend 21d). The construted attractor has a similar shape as the
recorded time series of the shear rate corresponds to dissipRessler’s attractor, however, no deterministic shape is found
tive deterministic chaos of dimensionality 3, even though &or the first return plot. So the dynamical varialdét) does
great similarity is observed. This might be, because the stasiot simply correspond to dissipative deterministic chaos of
tistic we study is very poor: up to 40 oscillations have beenrdimensionality 3. This illustrates that a few spatial effects
studied. This might be due also to a low noisy frequencycould lead to the results presented concerning the recorded
dynamics. The studied dynamics may also correspond to shear rate. Actually, this example is very simple, spatial cou-
four-dimensional chaotic state, but in this case the transitiopling effects may occur between these three variables, but a
to the latter requires the presence of a three-dimensionahore complicated case involving three oscillating variables
strange attractor which has not been observed. However, waeith nonlinear coupling terms would provide the same result.
cannot exclude that this result suggests that the observed fact, the illustration presented here does not prove these
dynamics may be more complex. A few coupling effects withstructures, it only suggests that a few spatial structures may
space may occur and so a spatiotemporal dynamics may lead to aperiodic time series which are not strictly chaotic of
recorded, as discussed in Sec. Ill. Such a case does not leddee dimensionality, even though the recorded shear rate is
to a simple shape in the first close return map, as we will sequalitatively similar to a three-dimensional chaotic variable.
later. Actually, rheology is an experimental tool used forlin fact, if more than three local variables were used to recon-
probing the viscosity of materials. However, the measure istruct a global measure, complex dynamical states as pre-
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sented in Fig. 11 can be reproduced easily. This region dogbe structural response of the onion texture involves time
not correspond to simple chaotic dynamic, but this may bescales of the order of minutes. This behavior was assumed to

due to a lot of spatiotemporal effects. be related to the displacement of the grain boundaries of the
disordered onion texturgl1]. In another context it has been
V. CONCLUSION measured with neutron scattering that the smectic period of

] ) . the ordered onion texture decreases with increasing shear

In this paper we have presented a detailed experimentghte[34]. It was assumed that the expelled water was staying
study of the dynamical behavior of the rheology of a com-petween the different layers of the ordered state. When the
plex fluid near a textural instability. We have shown that ashear rate is stopped, the swelling kinetics of the compressed
complex behavior with different regimes as a function ofgnjon texture show strong nonlinear effects on long time
time can be described. Among the most interesting regimesycales[28]. Finally, the time scales of reorganization of the
sustained oscillations anchaoticlike types of signals have gnjon texture between two different imposed stresses are of
been observed. We have shown that the temporal dependengg order of minute§47]. The oscillations may be the result
is related to textural changes involving the whole sample. Wey a competition between an ordering of the disordered state
spend some time analyzing tiehaoticlike signal, using a griven by the stres¢mechanical orderingand a slow tex-
careful mathematical analysis. We cannot prove that the Sigyral evolution which destroys the stress-induced ordered
nal corresponds really to a three-dimensional chaotic systeniate. These two effects may take place on different time
even though it has several distinctive features resembling gcajes and may produce oscillating behavior. The strong de-
three-dimensional deterministic chaotic state. To conclude, tgendence of the observed dynamics with temperature may be
interpret the signal we have, we make the hypothesis thalyplained by the dependence on temperature of the time
there is a coupling between temporal behavior and spatidjcales discussed above. For example, it has been shown that
instabilities involving a finite but small number of cells. We ine time scale of the swelling kinetics depends strongly on

have also shown with rheophysics tools that such spatighe temperature, due to the presence of thermally activated
structures are probably in tHév direction. A question re-  gefects in the lamellar pha§ag].

mains about the microscopic origin of the observed dynam-
ics. It is obviously a complicated problem. However, we can

make some assgmpt_ions according to the experimen_tal re- ACKNOWLEDGMENTS
sults discussed in this paper. First, the observed period of
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